Skip to content
Snippets Groups Projects
Verified Commit 078ba9e0 authored by Louis's avatar Louis :fire:
Browse files

Write rustdoc w/ doc tests

parent 64e18b79
No related branches found
No related tags found
No related merge requests found
/target /target
/Cargo.lock /Cargo.lock
.idea/
\ No newline at end of file
# Micro Autotile
[![https://crates.io/crates/micro_autotile](https://img.shields.io/crates/v/micro_autotile?style=for-the-badge)](https://crates.io/crates/micro_autotile)
[![https://docs.rs/micro_autotile](https://img.shields.io/docsrs/micro_autotile?style=for-the-badge)](https://docs.rs/micro_autotile)
_Bring LDTK's autotile feature to your Rust project_
`micro_autotile` provides an implementation of the LDTK auto-tiling algorithm, for use in
programs at runtime. The representation is compatible with that saved by LDTK, meaning that
definitions can be loaded directly from LDTK JSON exports. Great for either building a
compatible editor into your project, or for using LDTK's rule format to decorate generated
content.
## Installation
Either add it to your `Cargo.toml` dependencies:
```toml
[dependencies]
micro_autotile = "0.1"
```
Or use cargo to add it to your project:
```sh
cargo add micro_autotile
```
## Usage
_For a more thorough usage guide, check out the [docs.rs](https://docs.rs/micro_autotile) page_
Autotiling is, fundamentally, a method of mapping a two dimensional pattern to a single scalar value.
The context for this is usually "tile maps" in video games, and while that is not the sole use case it
is the one that will be assumed throughout the docs for `micro_autotile`.
To start, determine what your input types and output types will be - in this example, we will use integers
to define types of terrain (walls, ground, water, etc) for our input, and the output will be a specific sprite
index in some theoretical sprite sheet.
1. Create one or more rules that define a pattern to match, a value to output, and optionally a percentage
chance for that rule to be chosen.
* ```rust
use micro_autotile::AutoTileRule;
const GROUND: usize = 0;
const WALL: usize = 1;
let alt_ground_rule = AutoTileRule::single_any_chance(GROUND, vec![123, 124, 125], 0.2);
let fallback_ground_rule = AutoTileRule::exact(GROUND, 126);
```
2. (Optional) Put together your rules in a rule set. This can be skipped and the rule structs used directly
* ```rust
use micro_autotile::{AutoRuleSet, AutoTileRule};
let ground_rules = AutoRuleSet::new(vec![alt_ground_rule, fallback_ground_rule]);
let wall_rules = AutoTileRule::exact(WALL, 35).into();
let combined_rules = wall_rules + ground_rules;
```
3. Elsewhere, generate a slice of level data wrapped in a `TileLayout` struct. This represents a single tile
(the central element) and its surrounding neighbors. The order of the neighbors is important, and is laid
out as though in a flattened grid.
* ```rust
use micro_autotile::TileLayout;
let layout = TileLayout::filled([
GROUND, GROUND, GROUND,
GROUND, WALL, GROUND,
GROUND, GROUND, GROUND,
]);
```
4. Produce an output using either the rule set or the rule directly (the same methods exist for both)
* ```rust
let output = combined_rules.resolve_match(&layout);
assert_eq!(output, Some(35));
```
\ No newline at end of file
hard_tabs = true
#group_imports = "StdExternalCrate"
use_field_init_shorthand = true
use_try_shorthand = true
\ No newline at end of file
//! `micro_autotile` provides an implementation of the LDTK auto-tiling algorithm, for use in
//! programs at runtime. The representation is compatible with that saved by LDTK, meaning that
//! definitions can be loaded directly from LDTK JSON exports.
//!
//! Creating a single rule works like this:
//!
//! 1. Create a `TileMatcher` out of `TileStatus` entries.
//! * Tile Matchers are squares represented as fixed size flat arrays
//! * Currently only 1x1 and 3x3 matchers are supported, 5x5 matchers are incompatible
//! * Since a Tile Matcher is a rule, they are usually created statically or loaded as
//! an asset that will not change much / at all
//! 2. Create a `TileOutput` that represents the value produces by this rule when it matches
//! * An output value of `Skip` will cause the rule to be a noop. This has utility when combined
//! with a rule's `chance` value, as part of a set of rules
//! * A `Single` output will always produce the same value
//! * A `Random` output will produce one of the provided values at random
//! 3. Combine these into an `AutoTileRule`
//! * There are a number of convenience methods for doing this process without mistakes in a single function call
//!
//! To utilise your matcher, you'll need to provide a specifically formatted slice of your input data (typically a sub-grid
//! of a tile map). If you're matching a single tile, you can use the convenience method `TileLayout::single`, otherwise
//! you will need to provide a 9 element array that represents 3 rows and 3 columns of data, in the following format:
//!
//! ```text
//! Flat array data
//! [1, 2, 3, 4, 5, 6, 7, 8, 9]
//! ```
//!
//! ```text
//! Formatted in the way it would appear if laid out in a tile map
//! [
//! 1, 2, 3, # First row, all three columns
//! 4, 5, 6, # Second row, all three columns
//! 7, 8, 9, # Third row, all three columns
//! ]
//! ```
//!
//! As we can see, the fifth element of the array is the centre tile of our matching grid. In fact, `TileLayout::single` constructs
//! a 9 element array where the fifth element is `Some(your_value)`, and the rest are simply `None`. This is possible because the
//! actual data represents each element as an `Option` (not as the simple numbers above), which allows matching up against edges of
//! data arrays, or against non-regular shapes. Putting this together to match against data from our tile map, we have the following:
//!
//! e.g.
//! ```rust
//! # use micro_autotile::{AutoTileRule, TileLayout, TileOutput};
//! # fn main() {
//! use micro_autotile::TileMatcher;
//! // Tile maps often use unsigned integers to represent different types of tiles
//! const WALL_TILE: usize = 0;
//! const GROUND_TILE: usize = 1;
//!
//! // Match a 1x1 ground tile, output the index within the spritesheet that we'll use for rendering
//! let match_1_x_1 = AutoTileRule::exact(GROUND_TILE, 57);
//!
//! assert_eq!(
//! match_1_x_1.resolve_match(&TileLayout::single(GROUND_TILE)),
//! Some(57)
//! );
//!
//! // More realistically, we might have some tile data for a ground tile with other data arround it.
//! // When we match against a rule, we're always trying to produce a value for the _central_ value in
//! // our `TileLayout` (the fifth element)
//! let enclosed_ground = TileLayout([
//! Some(WALL_TILE), Some(WALL_TILE), Some(WALL_TILE),
//! Some(WALL_TILE), Some(GROUND_TILE), Some(WALL_TILE),
//! Some(WALL_TILE), Some(WALL_TILE), Some(WALL_TILE),
//! ]);
//!
//! assert_eq!(
//! match_1_x_1.resolve_match(&enclosed_ground),
//! Some(57)
//! );
//!
//! // There may also be situations in which you just want to know that a given layout matches a rule, without
//! // concern for producing a value for that layout. You can directly use a `TileMatcher` for this
//! assert!(TileMatcher::single(GROUND_TILE).matches(&enclosed_ground));
//! # }
//! ```
//!
//! There's already a lot of utility to these structures, but we still need to manually run a set of
//! rules against our maps and do some work with the `AutoTileRule::chance` property to figure out
//! what the final output should be for a given layout.
//!
//! Introducing the `AutoRuleSet` struct, that represents a sequence of rules that should be evaluated
//! to produce an output. It provides similar methods to the individual AutoTileRule, but will execute
//! against a set of rules at once. There are also convenience methods for combining AutoRuleSet
//! instances
//!
//! ```rust
//! # use micro_autotile::{AutoTileRule, AutoRuleSet, TileLayout, TileOutput};
//! # fn main() {
//! use micro_autotile::{TileMatcher, TileStatus};
//! const WALL_TILE: usize = 0;
//! const GROUND_TILE: usize = 1;
//! const OTHER_TILE: usize = 342;
//!
//! let wall_rules = AutoRuleSet(vec![
//! AutoTileRule::single_when(TileMatcher([ // Top Left Corner
//! TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! TileStatus::IsNot(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE),
//! TileStatus::IsNot(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE),
//! ]), 54),
//! AutoTileRule::single_when(TileMatcher([ // Top Right Corner
//! TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! TileStatus::Is(WALL_TILE), TileStatus::Is(WALL_TILE), TileStatus::IsNot(WALL_TILE),
//! ]), 55),
//! // ... Etc
//! ]);
//!
//! let ground_rules = AutoRuleSet(vec![
//! // Use decorated tiles in 10% of cases
//! AutoTileRule::single_any_chance(GROUND_TILE, vec![45, 46, 47], 0.1),
//! // Fall back to the basic tile if we don't match previously
//! AutoTileRule::exact(GROUND_TILE, 44),
//! ]);
//!
//! // Easily merge rule sets in an ordered way
//! let combined_rules = wall_rules + ground_rules;
//!
//! let sublayout = TileLayout([
//! Some(OTHER_TILE), Some(GROUND_TILE), Some(GROUND_TILE),
//! Some(WALL_TILE), Some(WALL_TILE), Some(OTHER_TILE),
//! Some(WALL_TILE), Some(WALL_TILE), Some(GROUND_TILE),
//! ]);
//!
//! // We've got a layout that represents the top right corner of a wall, the second rule in our
//! // set - the value of the tiles that match "IsNot(WALL_TILE)" are irrelevant, as long as they
//! // exist (Option::Some)
//! let output = combined_rules.resolve_match(&sublayout);
//! assert_eq!(output, Some(55));
//! # }
//! ```
use std::ops::Add; use std::ops::Add;
/// Represents how a single tile location should be matched when evaluating a rule
#[derive(Ord, PartialOrd, Eq, PartialEq, Hash, Debug, Default, Copy, Clone)] #[derive(Ord, PartialOrd, Eq, PartialEq, Hash, Debug, Default, Copy, Clone)]
pub enum TileStatus { pub enum TileStatus {
/// This tile will always match, regardless of the input tile
#[default] #[default]
Ignore, Ignore,
/// This tile will only match when there is no input tile (`None`)
Nothing, Nothing,
/// This tile will always match as long as the tile exists (`Option::is_some`)
Anything, Anything,
/// This tile will match as long as the input tile exists and the input value is the same as this value
Is(usize), Is(usize),
/// This tile will match as long as the input tile exists and the input value is anything other than this value
IsNot(usize), IsNot(usize),
} }
...@@ -49,11 +189,26 @@ impl TileStatus { ...@@ -49,11 +189,26 @@ impl TileStatus {
} }
} }
/// Holds the evaluation rules for a 3x3 grid of tiles. A 1x1 grid of tile matchers
/// can be created by providing an array of `TileStatus` structs that are all `TileStatus::Ignore`,
/// except for the value in the fifth position
///
/// e.g.
///
/// ```
/// # use micro_autotile::{TileMatcher, TileStatus};
/// let matcher = TileMatcher([
/// TileStatus::Ignore, TileStatus::Ignore, TileStatus::Ignore,
/// TileStatus::Ignore, TileStatus::Anything, TileStatus::Ignore,
/// TileStatus::Ignore, TileStatus::Ignore, TileStatus::Ignore,
/// ]);
/// ```
#[derive(Clone, Debug, Default)] #[derive(Clone, Debug, Default)]
#[repr(transparent)] #[repr(transparent)]
pub struct TileMatcher(pub [TileStatus; 9]); pub struct TileMatcher(pub [TileStatus; 9]);
impl TileMatcher { impl TileMatcher {
/// Create a 1x1 matcher, where the target tile must be the supplied `value`
pub const fn single(value: usize) -> Self { pub const fn single(value: usize) -> Self {
Self([ Self([
TileStatus::Ignore, TileStatus::Ignore,
...@@ -68,6 +223,7 @@ impl TileMatcher { ...@@ -68,6 +223,7 @@ impl TileMatcher {
]) ])
} }
/// Create a 1x1 matcher, with any rule for the target tile
pub const fn single_match(value: TileStatus) -> Self { pub const fn single_match(value: TileStatus) -> Self {
Self([ Self([
TileStatus::Ignore, TileStatus::Ignore,
...@@ -82,6 +238,7 @@ impl TileMatcher { ...@@ -82,6 +238,7 @@ impl TileMatcher {
]) ])
} }
/// Check if the given input layout of tile data conforms to this matcher
pub fn matches(&self, layout: &TileLayout) -> bool { pub fn matches(&self, layout: &TileLayout) -> bool {
self.0 self.0
.iter() .iter()
...@@ -89,6 +246,8 @@ impl TileMatcher { ...@@ -89,6 +246,8 @@ impl TileMatcher {
.all(|(status, reality)| *status == *reality) .all(|(status, reality)| *status == *reality)
} }
/// Load data from an LDTK JSON file. Currently supports 1x1 and 3x3 matchers.
/// Other sizes of matcher will result in `None`
pub fn from_ldtk_array(value: Vec<i64>) -> Option<Self> { pub fn from_ldtk_array(value: Vec<i64>) -> Option<Self> {
if value.len() == 1 { if value.len() == 1 {
let tile = value[0]; let tile = value[0];
...@@ -107,14 +266,43 @@ impl TileMatcher { ...@@ -107,14 +266,43 @@ impl TileMatcher {
} }
} }
/// Represents a grid of input data. What this data means is dependant on your application, and
/// could realistically correlate to anything. It is assumed to be a 3x3 slice of tile data from a
/// tile map
#[derive(Clone, Debug, Default)] #[derive(Clone, Debug, Default)]
#[repr(transparent)] #[repr(transparent)]
pub struct TileLayout(pub [Option<usize>; 9]); pub struct TileLayout(pub [Option<usize>; 9]);
impl TileLayout { impl TileLayout {
/// Create a 1x1 grid of tile data
pub fn single(value: usize) -> Self { pub fn single(value: usize) -> Self {
TileLayout([None, None, None, None, Some(value), None, None, None, None]) TileLayout([None, None, None, None, Some(value), None, None, None, None])
} }
/// Construct a filled 3x3 grid of tile data
pub fn filled(values: [usize; 9]) -> Self {
TileLayout(values.map(Some))
}
/// Construct a filled 3x3 grid of identical tile data
pub fn spread(value: usize) -> Self {
TileLayout([Some(value); 9])
}
/// Filter the layout data so that it only contains the tiles surrounding the target tile. The main
/// utility of this is to perform set operations on every tile _other_ than the target tile.
///
/// e.g.
///
/// ```
/// # use micro_autotile::TileLayout;
/// let layout = TileLayout::single(123);
/// let has_any_surrounding_tiles = layout.surrounding()
/// .iter()
/// .any(|tile| tile.is_some());
///
/// assert_eq!(has_any_surrounding_tiles, false);
/// ```
pub fn surrounding(&self) -> [Option<usize>; 8] { pub fn surrounding(&self) -> [Option<usize>; 8] {
[ [
self.0[0], self.0[1], self.0[2], self.0[3], self.0[5], self.0[6], self.0[7], self.0[8], self.0[0], self.0[1], self.0[2], self.0[3], self.0[5], self.0[6], self.0[7], self.0[8],
...@@ -122,35 +310,72 @@ impl TileLayout { ...@@ -122,35 +310,72 @@ impl TileLayout {
} }
} }
/// Represents the value produced when a rule is matched. Will need to be inspected to find out
/// the raw data value. This value will typically correspond to an index in a spritesheet, but
/// there is no proscribed meaning - it will be application dependant and could represent some
/// other index or meaning
#[derive(Clone, Debug, Default)] #[derive(Clone, Debug, Default)]
pub enum TileOutput { pub enum TileOutput {
/// This output should be skipped. Noop equivalent
#[default] #[default]
Skip, Skip,
/// This exact value should be produces
Single(usize), Single(usize),
/// Some method should be used to select one of the values in this list
Random(Vec<usize>), Random(Vec<usize>),
} }
impl TileOutput { impl TileOutput {
/// Create an output that can produce the input value when this output is selected
pub const fn single(value: usize) -> Self { pub const fn single(value: usize) -> Self {
TileOutput::Single(value) TileOutput::Single(value)
} }
/// Create an output that can produce any of these input values when this output is selected
pub const fn any(value: Vec<usize>) -> Self { pub const fn any(value: Vec<usize>) -> Self {
TileOutput::Random(value) TileOutput::Random(value)
} }
/// Produce the value this output represents. Will use a default randomly seeded RNG to
/// select from a list, if appropriate
#[cfg(feature = "impl_fastrand")]
pub fn resolve(&self) -> Option<usize> {
self.resolve_with(&fastrand::Rng::default())
}
/// Produce the value this output represents. Will use a default randomly seeded RNG to
/// select from a list, if appropriate
#[cfg(feature = "impl_fastrand")]
pub fn resolve_with(&self, rng: &fastrand::Rng) -> Option<usize> {
match self {
Self::Skip => None,
Self::Single(val) => Some(*val),
Self::Random(vals) => vals.get(rng.usize(0..vals.len())).copied(),
}
}
} }
/// Checks tile layouts against a matcher instance, and uses the output to produce a value
#[derive(Clone, Debug, Default)] #[derive(Clone, Debug, Default)]
pub struct AutoTileRule { pub struct AutoTileRule {
/// The pattern that this rule will use for matching
pub matcher: TileMatcher, pub matcher: TileMatcher,
/// The value produced when this rule gets matched
pub output: TileOutput, pub output: TileOutput,
/// When used as part of a set of rules, this value (0.0 - 1.0) determines the chance that
/// a successful match will generate an output from this rule
pub chance: f32, pub chance: f32,
} }
impl AutoTileRule { impl AutoTileRule {
/// Create a rule that will always produce `output_value` when the target tile matches
/// `input_value`
pub const fn exact(input_value: usize, output_value: usize) -> Self { pub const fn exact(input_value: usize, output_value: usize) -> Self {
Self::exact_chance(input_value, output_value, 1.0) Self::exact_chance(input_value, output_value, 1.0)
} }
/// Create a rule that will produce `output_value` when the target tile matches
/// `input_value` and the selection chance is rolled under the value of `chance` (0.0 to 1.0)
pub const fn exact_chance(input_value: usize, output_value: usize, chance: f32) -> Self { pub const fn exact_chance(input_value: usize, output_value: usize, chance: f32) -> Self {
AutoTileRule { AutoTileRule {
matcher: TileMatcher::single(input_value), matcher: TileMatcher::single(input_value),
...@@ -158,6 +383,9 @@ impl AutoTileRule { ...@@ -158,6 +383,9 @@ impl AutoTileRule {
chance, chance,
} }
} }
/// Create a rule that will always produce `output_value` when `matcher` evaluates to
/// `true`
pub const fn single_when(matcher: TileMatcher, output_value: usize) -> Self { pub const fn single_when(matcher: TileMatcher, output_value: usize) -> Self {
AutoTileRule { AutoTileRule {
matcher, matcher,
...@@ -166,10 +394,15 @@ impl AutoTileRule { ...@@ -166,10 +394,15 @@ impl AutoTileRule {
} }
} }
/// Create a rule that will always produce one of the values contained in `output_value`
/// when the target tile matches `input_value`
pub const fn single_any(input_value: usize, output_value: Vec<usize>) -> Self { pub const fn single_any(input_value: usize, output_value: Vec<usize>) -> Self {
Self::single_any_chance(input_value, output_value, 1.0) Self::single_any_chance(input_value, output_value, 1.0)
} }
/// Create a rule that will produce one of the values contained in `output_value`
/// when the target tile matches `input_value` and the selection chacne is rolled under the
/// value of `chance` (0.0 to 1.0)
pub const fn single_any_chance( pub const fn single_any_chance(
input_value: usize, input_value: usize,
output_value: Vec<usize>, output_value: Vec<usize>,
...@@ -182,6 +415,9 @@ impl AutoTileRule { ...@@ -182,6 +415,9 @@ impl AutoTileRule {
} }
} }
/// Create a rule that will produce one of the values contained in `output_value`
/// when when `matcher` evaluates to `true` and the selection chacne is rolled under
/// the value of `chance` (0.0 to 1.0)
pub const fn any_any_chance( pub const fn any_any_chance(
input_value: TileMatcher, input_value: TileMatcher,
output_value: Vec<usize>, output_value: Vec<usize>,
...@@ -194,6 +430,10 @@ impl AutoTileRule { ...@@ -194,6 +430,10 @@ impl AutoTileRule {
} }
} }
/// Evaluate this rule and return the unresolved output value. "None" represents either no
/// match or a match that failed its chance roll.
///
/// Will use a default randomly seeded RNG to evaluate the chance roll for this rule
#[cfg(feature = "impl_fastrand")] #[cfg(feature = "impl_fastrand")]
pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> { pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> {
let chance = fastrand::f32(); let chance = fastrand::f32();
...@@ -205,6 +445,10 @@ impl AutoTileRule { ...@@ -205,6 +445,10 @@ impl AutoTileRule {
} }
} }
/// Evaluate this rule and return the unresolved output value. "None" represents either no
/// match or a match that failed its chance roll.
///
/// Will use the provided RNG to evaluate the chance roll for this rule
#[cfg(feature = "impl_fastrand")] #[cfg(feature = "impl_fastrand")]
pub fn get_match_seeded( pub fn get_match_seeded(
&self, &self,
...@@ -219,20 +463,94 @@ impl AutoTileRule { ...@@ -219,20 +463,94 @@ impl AutoTileRule {
None None
} }
} }
/// Evaluate this rule and produce an output, if a match is found. "None" represents either
/// no match, a match that resolved to `TileOutput::Skip`, or a match that failed its chance
/// roll.
///
/// Will use a default randomly seeded RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match(&self, input: &TileLayout) -> Option<usize> {
self.get_match(input).and_then(|out| out.resolve())
}
/// Evaluate this rule and produce an output, if a match is found. "None" represents either
/// no match, a match that resolved to `TileOutput::Skip`, or a match that failed its chance
/// roll.
///
/// Will use a the provided RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match_seeded(
&self,
input: &TileLayout,
seeded: &fastrand::Rng,
) -> Option<usize> {
self.get_match_seeded(input, seeded)
.and_then(|out| out.resolve_with(seeded))
}
} }
/// Holds a list of rules, for efficiently evaluating a tile layout against multiple exclusive rules.
/// Rules will be evaluated in the order they are added to the set, and will stop evaluating when
/// a match is found
#[derive(Clone, Debug, Default)] #[derive(Clone, Debug, Default)]
pub struct AutoRuleSet(pub Vec<AutoTileRule>); pub struct AutoRuleSet(pub Vec<AutoTileRule>);
impl Add<AutoRuleSet> for AutoRuleSet { impl Add<AutoRuleSet> for AutoRuleSet {
type Output = AutoRuleSet; type Output = AutoRuleSet;
/// Combine two AutoRuleSet values, where the rules in the right hand side
/// will be appended to the end of the set represented by the left hand
/// side
fn add(self, rhs: AutoRuleSet) -> Self::Output { fn add(self, rhs: AutoRuleSet) -> Self::Output {
AutoRuleSet([self.0.as_slice(), rhs.0.as_slice()].concat()) AutoRuleSet([self.0.as_slice(), rhs.0.as_slice()].concat())
} }
} }
impl From<AutoTileRule> for AutoRuleSet {
/// Create a rule set from a single rule
///
/// ```rust
/// # use micro_autotile::{AutoRuleSet, AutoTileRule};
/// # fn main() {
/// use micro_autotile::TileLayout;
/// let rule_set: AutoRuleSet = AutoTileRule::exact(1, 2).into();
///
/// assert_eq!(rule_set.resolve_match(&TileLayout::single(1)), Some(2));
/// # }
/// ```
fn from(value: AutoTileRule) -> Self {
Self(vec![value])
}
}
impl From<Vec<AutoTileRule>> for AutoRuleSet {
/// Convert a set of rules into a rule set
///
/// ```rust
/// # use micro_autotile::{AutoRuleSet, AutoTileRule};
/// # fn main() {
/// use micro_autotile::TileLayout;
/// let rule_set: AutoRuleSet = vec![
/// AutoTileRule::exact(1, 2),
/// AutoTileRule::exact(5123, 231)
/// ].into();
///
/// assert_eq!(rule_set.resolve_match(&TileLayout::single(1)), Some(2));
/// # }
/// ```
fn from(value: Vec<AutoTileRule>) -> Self {
Self(value)
}
}
impl AutoRuleSet { impl AutoRuleSet {
/// Evaluate this set of rules and return the unresolved output value from the first match.
/// A return value of `None` means that no rules have matched.
///
/// Will use a default randomly seeded RNG to evaluate the chance roll for each matching rule
#[cfg(feature = "impl_fastrand")] #[cfg(feature = "impl_fastrand")]
pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> { pub fn get_match(&self, input: &TileLayout) -> Option<&TileOutput> {
for rule in self.0.iter() { for rule in self.0.iter() {
...@@ -244,6 +562,11 @@ impl AutoRuleSet { ...@@ -244,6 +562,11 @@ impl AutoRuleSet {
None None
} }
/// Evaluate this set of rules and return the unresolved output value from the first match.
/// A return value of `None` means that no rules have matched, or all matching results failed
/// their chance roll or resolved to `TileOutput::Skip`.
///
/// Will use the provided RNG to evaluate the chance roll for each matching rule
#[cfg(feature = "impl_fastrand")] #[cfg(feature = "impl_fastrand")]
pub fn get_match_seeded( pub fn get_match_seeded(
&self, &self,
...@@ -258,4 +581,31 @@ impl AutoRuleSet { ...@@ -258,4 +581,31 @@ impl AutoRuleSet {
} }
None None
} }
/// Evaluate this set of rules and produce an output, if a match is found.
/// A return value of `None` means that no rules have matched, or all matching results failed
/// their chance roll or resolved to `TileOutput::Skip`.
///
/// Will use a default randomly seeded RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match(&self, input: &TileLayout) -> Option<usize> {
self.get_match(input).and_then(|out| out.resolve())
}
/// Evaluate this set of rules and produce an output, if a match is found.
/// A return value of `None` means that no rules have matched, or all matching results failed
/// their chance roll or resolved to `TileOutput::Skip`.
///
/// Will use the provided RNG to select from a list, if the output resolves to
/// a random selection
#[cfg(feature = "impl_fastrand")]
pub fn resolve_match_seeded(
&self,
input: &TileLayout,
seeded: &fastrand::Rng,
) -> Option<usize> {
self.get_match_seeded(input, seeded)
.and_then(|out| out.resolve_with(seeded))
}
} }
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment