Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use bevy::prelude::{Entity, World};
use bevy::utils::HashMap;
use morphorm::Hierarchy;
use std::iter::Rev;
use crate::context::WidgetName;
use crate::node::WrappedIndex;
#[derive(Default, Debug, Clone, PartialEq, Eq)]
pub struct Tree {
pub children: HashMap<WrappedIndex, Vec<WrappedIndex>>,
pub parents: HashMap<WrappedIndex, WrappedIndex>,
pub root_node: Option<WrappedIndex>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Change {
Unchanged,
Inserted,
Deleted,
Updated,
Moved,
}
#[derive(Default, Debug, Clone)]
pub struct ChildChanges {
pub changes: Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)>,
pub child_changes: Vec<(usize, ChildChanges)>,
}
impl ChildChanges {
pub fn has_changes(&self) -> bool {
!self
.changes
.iter()
.all(|change| change.3.iter().all(|c| *c == Change::Unchanged))
}
pub fn debug_print(&self, world: &World) {
for (index, child, parent, changes) in self.changes.iter() {
if let Some(entity_ref) = world.get_entity(child.0) {
let name = entity_ref
.get::<WidgetName>()
.map(|n| n.0.clone())
.unwrap_or("Unknown".into());
println!(
"[name: {}, index: {}, entity: {}, parent: {}, change: {:?}]",
name,
index,
child.0.index(),
parent.0.index(),
changes
);
}
}
}
}
impl From<Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)>> for ChildChanges {
fn from(changes: Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)>) -> Self {
Self {
changes,
child_changes: Vec::new(),
}
}
}
impl Tree {
pub fn add(&mut self, index: WrappedIndex, parent: Option<WrappedIndex>) {
if let Some(parent_index) = parent {
self.parents.insert(index, parent_index);
if let Some(parent_children) = self.children.get_mut(&parent_index) {
parent_children.push(index);
} else {
self.children.insert(parent_index, vec![index]);
}
} else {
self.root_node = Some(index);
}
}
pub fn remove_without_children(&mut self, index: WrappedIndex) {
self.parents.remove(&index);
self.children.remove(&index);
}
/// Remove the given node and recursively removes its descendants
pub fn remove(&mut self, index: WrappedIndex) -> Vec<WrappedIndex> {
let parent = self.parents.remove(&index);
if let Some(parent) = parent {
let children = self
.children
.remove(&index)
.unwrap_or_default()
.into_iter()
.flat_map(|child| self.remove(child))
.collect();
if let Some(siblings) = self.children.get_mut(&parent) {
siblings.retain(|node| *node != index);
}
children
} else {
// Is root node
if let Some(root_node) = self.root_node {
if root_node == index {
self.root_node = None;
self.parents.clear();
self.children.clear();
}
}
Vec::default()
}
}
pub fn remove_children(&mut self, children_to_remove: Vec<WrappedIndex>) {
for child in children_to_remove.iter() {
self.remove(*child);
}
}
/// Removes the current node and reparents any children to its current parent.
///
/// Children fill at the original index of the removed node amongst its siblings.
///
/// Panics if called on the root node
pub fn remove_and_reparent(&mut self, index: WrappedIndex) {
let parent = self.parents.remove(&index);
if let Some(parent) = parent {
let mut insertion_index = 0usize;
// === Get Sibling Index === //
if let Some(siblings) = self.children.get_mut(&parent) {
insertion_index = siblings.iter().position(|node| *node == index).unwrap();
}
// === Reparent Children === //
if let Some(children) = self.children.remove(&index) {
for child in children.iter() {
self.parents.insert(*child, parent);
}
if let Some(siblings) = self.children.get_mut(&parent) {
siblings.splice(insertion_index..insertion_index + 1, children);
}
}
} else {
panic!("Cannot reparent a root node's children")
}
}
/// Replace the given node with another, transferring the parent and child relationships over to the replacement node
pub fn replace(&mut self, index: WrappedIndex, replace_with: WrappedIndex) {
// === Update Parent === //
if let Some(parent) = self.parents.remove(&index) {
self.parents.insert(replace_with, parent);
if let Some(siblings) = self.children.get_mut(&parent) {
let idx = siblings.iter().position(|node| *node == index).unwrap();
siblings[idx] = replace_with;
}
} else {
self.root_node = Some(replace_with);
}
// === Update Children === //
if let Some(children) = self.children.remove(&index) {
for child in children.iter() {
self.parents.insert(*child, replace_with);
}
self.children.insert(replace_with, children);
}
}
/// Returns true if the given node is in this tree
pub fn contains(&self, index: WrappedIndex) -> bool {
Some(index) == self.root_node
|| self.parents.contains_key(&index)
|| self.children.contains_key(&index)
}
/// Get the number of nodes in this tree
pub fn len(&self) -> usize {
if self.root_node.is_some() {
self.parents.len() + 1
} else {
0
}
}
/// Returns true if this tree has no nodes
pub fn is_empty(&self) -> bool {
self.root_node.is_none() && self.parents.is_empty() && self.children.is_empty()
}
/// Returns true if the given node is a descendant of another node
pub fn is_descendant(&self, descendant: WrappedIndex, of_node: WrappedIndex) -> bool {
let mut index = descendant;
while let Some(parent) = self.get_parent(index) {
index = parent;
if parent == of_node {
return true;
}
}
false
}
pub fn flatten(&self) -> Vec<WrappedIndex> {
if self.root_node.is_none() {
return Vec::new();
}
DownwardIterator::new(self, Some(self.root_node.unwrap()), true).collect::<Vec<_>>()
}
pub fn flatten_node(&self, root_node: WrappedIndex) -> Vec<WrappedIndex> {
if self.root_node.is_none() {
return Vec::new();
}
DownwardIterator::new(self, Some(root_node), true).collect::<Vec<_>>()
}
pub fn flatten_node_up(&self, root_node: WrappedIndex) -> Vec<WrappedIndex> {
if self.root_node.is_none() {
return Vec::new();
}
UpwardIterator::new(self, Some(root_node), true).collect::<Vec<_>>()
}
pub fn get_parent(&self, index: WrappedIndex) -> Option<WrappedIndex> {
self.parents.get(&index).copied()
}
pub fn get_first_child(&self, index: WrappedIndex) -> Option<WrappedIndex> {
self.children
.get(&index)
.and_then(|children| children.first().copied())
}
pub fn get_last_child(&self, index: WrappedIndex) -> Option<WrappedIndex> {
self.children
.get(&index)
.and_then(|children| children.last().copied())
}
pub fn get_next_sibling(&self, index: WrappedIndex) -> Option<WrappedIndex> {
if let Some(parent_index) = self.get_parent(index) {
self.children.get(&parent_index).and_then(|children| {
children
.iter()
.position(|child| *child == index)
.and_then(|child_index| children.get(child_index + 1).copied())
})
} else {
None
}
}
pub fn get_prev_sibling(&self, index: WrappedIndex) -> Option<WrappedIndex> {
if let Some(parent_index) = self.get_parent(index) {
self.children.get(&parent_index).and_then(|children| {
children
.iter()
.position(|child| *child == index)
.and_then(|child_index| {
if child_index > 0 {
children.get(child_index - 1).copied()
} else {
None
}
})
})
} else {
None
}
}
pub fn diff_children(
&self,
other_tree: &Tree,
root_node: WrappedIndex,
depth: u32,
) -> ChildChanges {
let children_a = self.children.get(&root_node);
let children_b = other_tree.children.get(&root_node);
// Handle both easy cases first..
if let (Some(children_a), None) = (children_a, children_b) {
return children_a
.iter()
.enumerate()
.map(|(child_id, child_node)| {
(child_id, *child_node, root_node, vec![Change::Deleted])
})
.collect::<Vec<_>>()
.into();
} else if let (None, Some(children_b)) = (children_a, children_b) {
return children_b
.iter()
.enumerate()
.map(|(child_id, child_node)| {
(child_id, *child_node, root_node, vec![Change::Inserted])
})
.collect::<Vec<_>>()
.into();
} else if children_a.is_none() && children_b.is_none() {
return vec![].into();
}
let mut child_changes = ChildChanges::default();
let children_a = children_a
.unwrap()
.iter()
.copied()
.enumerate()
.collect::<Vec<(usize, WrappedIndex)>>();
let children_b = children_b
.unwrap()
.iter()
.copied()
.enumerate()
.collect::<Vec<(usize, WrappedIndex)>>();
let deleted_nodes = children_a
.iter()
// Find matching child
.filter(|(_, node)| !children_b.iter().any(|(_, node_b)| node == node_b))
.map(|(id, node)| (*id, *node, root_node, vec![Change::Deleted]))
.collect::<Vec<_>>();
child_changes.changes.extend(deleted_nodes);
let inserted_and_changed = children_b
.iter()
.map(|(id, node)| {
let old_node = children_a.get(*id);
let inserted = old_node.is_none()
|| old_node.is_some()
&& !children_a.iter().any(|(_, old_node)| node == old_node);
let value_changed = if let Some((_, old_node)) = old_node {
node != old_node
} else {
false
};
let changed = match (inserted, value_changed) {
(true, false) => Change::Inserted,
(true, true) => Change::Inserted,
(false, true) => Change::Updated,
(false, false) => Change::Unchanged,
};
(*id, *node, root_node, vec![changed])
})
.collect::<Vec<_>>();
child_changes.changes.extend(inserted_and_changed);
if !child_changes.changes.is_empty()
&& child_changes.changes.iter().any(|a| {
child_changes
.changes
.iter()
.any(|b| a.1 == b.1 && a.3 != b.3)
})
{
dbg!("ABORT!");
dbg!(&children_a);
dbg!(&children_b);
}
let flat_tree_diff_nodes = child_changes
.changes
.iter()
.map(|(id, node, parent_node, change)| {
if change[0] == Change::Deleted {
return (*id, *node, *parent_node, change.clone());
} else if change[0] == Change::Inserted {
let child_id = other_tree
.children
.get(parent_node)
.unwrap()
.iter()
.position(|child| child == node)
.unwrap();
return (child_id, *node, *parent_node, change.clone());
}
let parent_a = self.parent(children_a.get(*id).unwrap().1);
let parent_b = self.parent(*node);
let definitely_moved =
if let (Some(parent_a), Some(parent_b)) = (parent_a, parent_b) {
parent_a != parent_b
|| (parent_a == parent_b
&& *node != children_a.get(*id).unwrap().1
&& children_a.iter().any(|(_, node_b)| node == node_b))
} else {
false
};
if definitely_moved {
let change = if change[0] == Change::Unchanged {
vec![Change::Moved]
} else if change[0] == Change::Updated {
vec![Change::Moved, Change::Updated]
} else {
vec![Change::Moved]
};
return (*id, *node, *parent_node, change);
}
(*id, *node, *parent_node, change.clone())
})
.collect::<Vec<_>>();
child_changes.changes = flat_tree_diff_nodes;
if depth > 0 {
for (child_id, child_node) in children_a.iter() {
// Add children of child changes.
let children_of_child_changes =
self.diff_children(other_tree, *child_node, depth - 1);
child_changes
.child_changes
.push((*child_id, children_of_child_changes));
}
}
child_changes
}
pub fn diff(
&self,
other_tree: &Tree,
root_node: WrappedIndex,
) -> Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)> {
let mut changes = Vec::new();
let mut tree1 = self
.flatten_node(root_node)
.into_iter()
.enumerate()
.collect::<Vec<_>>();
let _root_a = tree1.remove(0);
let mut tree2 = other_tree
.flatten_node(root_node)
.into_iter()
.enumerate()
.collect::<Vec<_>>();
let _root_b = tree2.remove(0);
let deleted_nodes = tree1
.iter()
// Find matching child
.filter(|(_, node)| !tree2.iter().any(|(_, node_b)| node == node_b))
.map(|(id, node)| {
(
*id - 1,
*node,
self.get_parent(*node).unwrap(),
vec![Change::Deleted],
)
})
.collect::<Vec<_>>();
changes.extend(deleted_nodes);
let inserted_and_changed = tree2
.iter()
.map(|(id, node)| {
let old_node = tree1.get(*id - 1);
let inserted =
old_node.is_some() && !tree1.iter().any(|(_, old_node)| node == old_node);
let value_changed = if let Some((_, old_node)) = old_node {
node != old_node
} else {
false
};
let changed = match (inserted, value_changed) {
(true, false) => Change::Inserted,
(true, true) => Change::Inserted,
(false, true) => Change::Updated,
(false, false) => Change::Unchanged,
};
(
*id - 1,
*node,
other_tree.get_parent(*node).unwrap(),
vec![changed],
)
})
.collect::<Vec<_>>();
changes.extend(inserted_and_changed);
let flat_tree_diff_nodes = changes
.iter()
.map(|(id, node, parent_node, change)| {
if change[0] == Change::Deleted {
return (0, *node, *parent_node, change.clone());
} else if change[0] == Change::Inserted {
let child_id = other_tree
.children
.get(parent_node)
.unwrap()
.iter()
.position(|child| child == node)
.unwrap();
return (child_id, *node, *parent_node, change.clone());
}
let parent_a = self.parent(tree1.get(*id).unwrap().1);
let parent_b = self.parent(*node);
let definitely_moved =
if let (Some(parent_a), Some(parent_b)) = (parent_a, parent_b) {
parent_a != parent_b
|| (parent_a == parent_b
&& *node != tree1.get(*id).unwrap().1
&& tree1.iter().any(|(_, node_b)| node == node_b))
} else {
false
};
if definitely_moved {
let change = if change[0] == Change::Unchanged {
vec![Change::Moved]
} else if change[0] == Change::Updated {
vec![Change::Moved, Change::Updated]
} else {
vec![Change::Moved]
};
return (*id, *node, *parent_node, change);
}
(*id, *node, *parent_node, change.clone())
})
.collect::<Vec<_>>();
flat_tree_diff_nodes
}
pub fn merge(
&mut self,
other: &Tree,
root_node: WrappedIndex,
changes: ChildChanges,
depth: u32,
) {
let has_changes = changes.has_changes();
let children_a = self.children.get(&root_node).cloned();
let children_b = other.children.get(&root_node);
if children_a.is_none() && children_b.is_none() {
// Nothing to do.
return;
} else if let (None, Some(children_b)) = (children_a.as_ref(), children_b) {
// Simple case of moving all children over to A.
self.children.insert(root_node, children_b.clone());
for (parent, children) in self.children.iter() {
for child in children.iter() {
self.parents.insert(*child, *parent);
}
}
return;
} else if let (Some(children_a), None) = (children_a.as_ref(), children_b) {
// Case for erasing all
if has_changes {
for child in children_a.iter() {
self.parents.remove(child);
}
self.children.remove(&root_node);
}
return;
}
let mut children_a = children_a.unwrap();
let children_b = children_b.unwrap();
children_a.resize(children_b.len(), WrappedIndex(Entity::from_raw(0)));
for (id, node, parent_node, change) in changes.changes.iter() {
match change.as_slice() {
[Change::Deleted] => {
self.parents.remove(node);
if children_a.get(*id).is_some() {
children_a[*id] = WrappedIndex(Entity::from_raw(0));
}
self.remove(*node);
}
[Change::Inserted] => {
children_a[*id] = *node;
self.parents.insert(*node, *parent_node);
}
[Change::Moved, Change::Updated] => {
children_a[*id] = *node;
self.parents.insert(*node, *parent_node);
}
[Change::Updated] => {
children_a[*id] = *node;
}
_ => {}
}
}
for (id, _node, _parent_node, _change) in changes.changes.iter() {
if let Some(child) = children_a.get(*id) {
if child.0.index() == 0 {
children_a.remove(*id);
}
}
}
self.children.insert(root_node, children_a);
if depth > 0 {
for (child_id, children_of_child_changes) in changes.child_changes {
self.merge(
other,
changes.changes[child_id].1,
children_of_child_changes,
depth - 1,
);
}
}
}
pub fn remove_child_from_node(&mut self, parent: &WrappedIndex, child: &WrappedIndex) {
if let Some(children) = self.children.get_mut(parent) {
let child_index = children.iter().position(|c| c == child);
if let Some(child_index) = child_index {
children.remove(child_index);
}
}
}
/// Copies a specific node and it's children from other_tree to self.
/// Note: Does not deep copy.
pub fn copy_from_point(&mut self, other_tree: &Tree, root_node: WrappedIndex) {
if let Some(children) = other_tree.children.get(&root_node) {
self.children.insert(root_node, children.clone());
for child in children.iter() {
self.parents.insert(*child, root_node);
}
}
}
/// Dumps the tree's current state to the console
///
/// To dump only a section of the tree, use [dump_at] instead.
///
/// # Arguments
///
/// * `widgets`: Optionally, provide the current widgets to include metadata about each widget
///
/// returns: ()
pub fn dump(&self) {
if let Some(root) = self.root_node {
self.dump_at(root);
}
}
/// Sometimes we need to see the entire tree even dangling nodes.
/// This function will display everything.
pub fn dump_all(&self, world: &World) {
let mut children = self.children.iter().collect::<Vec<_>>();
children.sort_by(|(a, _), (b, _)| a.0.index().partial_cmp(&b.0.index()).unwrap());
for (parent, children) in children.iter() {
let name = if let Some(entity_ref) = world.get_entity(parent.0) {
entity_ref.get::<WidgetName>().map(|n| n.0.clone())
} else {
None
};
println!(
"[{}::{}]",
name.unwrap_or("Unknown".into()),
parent.0.index()
);
for child in children.iter() {
let name = if let Some(entity_ref) = world.get_entity(parent.0) {
entity_ref.get::<WidgetName>().map(|n| n.0.clone())
} else {
None
};
println!(
" [{}::{}]",
name.unwrap_or("Unknown".into()),
child.0.index()
);
}
println!();
}
}
/// Sometimes we need to see the entire tree even dangling nodes.
/// This function will display everything.
pub fn dump_all_at(&self, world: Option<&World>, parent: Entity) {
let no_children = vec![];
let children = self
.children
.get(&WrappedIndex(parent))
.unwrap_or(&no_children);
let name: Option<String> = if let Some(world) = world {
if let Some(entity_ref) = world.get_entity(parent) {
entity_ref.get::<WidgetName>().map(|n| n.0.clone())
} else {
None
}
} else {
None
};
println!("[{}::{}]", name.unwrap_or("Unknown".into()), parent.index());
for child in children.iter() {
let name = if let Some(world) = world {
if let Some(entity_ref) = world.get_entity(child.0) {
entity_ref.get::<WidgetName>().map(|n| n.0.clone())
} else {
None
}
} else {
None
};
println!(
" [{}::{}]",
name.unwrap_or("Unknown".into()),
child.0.index()
);
}
}
/// Dumps a section of the tree's current state to the console (starting from a specific index)
///
/// To dump the entire tree, use [dump] instead.
///
/// # Arguments
///
/// * `start_index`: The index to start recursing from (including itself)
/// * `widgets`: Optionally, provide the current widgets to include metadata about each widget
///
/// returns: ()
pub fn dump_at(&self, start_index: WrappedIndex) {
self.dump_at_internal(start_index, 0);
// let mut depth = 0;
// for child in self.down_iter_at(start_index, true) {
// let indent = " ".repeat(depth);
// let raw_parts = child.0.index();
// println!("{} [{}]", indent, raw_parts);
// depth += 1;
// }
}
fn dump_at_internal(&self, start_index: WrappedIndex, depth: usize) {
let indent = " ".repeat(depth);
let raw_parts = start_index.0.index();
println!("{} [{}]", indent, raw_parts,);
if let Some(children) = self.children.get(&start_index) {
for node_index in children {
self.dump_at_internal(*node_index, depth + 1);
}
}
}
pub fn down_iter_at(&self, node: WrappedIndex, include_self: bool) -> DownwardIterator {
DownwardIterator::new(self, Some(node), include_self)
}
}
/// An iterator that performs a depth-first traversal down a tree starting
/// from a given node.
pub struct DownwardIterator<'a> {
pub tree: &'a Tree,
pub starting_node: Option<WrappedIndex>,
pub current_node: Option<WrappedIndex>,
pub include_self: bool,
}
impl<'a> DownwardIterator<'a> {
/// Creates a new [`DownwardIterator`] for the given [tree] and [node].
///
/// # Arguments
///
/// * `tree`: The tree to be iterated.
/// * `starting_node`: The node to start iterating from.
/// * `include_self`: Whether or not to include the starting node in the output.
///
///
/// [tree]: Tree
/// [node]: WrappedIndex
pub fn new(tree: &'a Tree, starting_node: Option<WrappedIndex>, include_self: bool) -> Self {
Self {
tree,
starting_node,
current_node: starting_node,
include_self,
}
}
}
impl<'a> Iterator for DownwardIterator<'a> {
type Item = WrappedIndex;
fn next(&mut self) -> Option<Self::Item> {
if self.include_self {
self.include_self = false;
return self.current_node;
}
if let Some(current_index) = self.current_node {
if let Some(first_child) = self.tree.get_first_child(current_index) {
// Descend!
self.current_node = Some(first_child);
return Some(first_child);
} else if self.current_node != self.starting_node {
// if the starting node has at least 1 child, continue checking downwards,
// otherwise do not check siblings
if let Some(next_sibling) = self.tree.get_next_sibling(current_index) {
// Continue from the next sibling
self.current_node = Some(next_sibling);
return Some(next_sibling);
} else {
let mut current_parent = self.tree.get_parent(current_index);
while current_parent.is_some() {
if current_parent == self.starting_node {
// Parent is starting node so no need to continue -> end iteration
return None;
}
if let Some(current_parent) = current_parent {
if let Some(next_parent_sibling) =
self.tree.get_next_sibling(current_parent)
{
// Continue from the sibling of the parent
self.current_node = Some(next_parent_sibling);
return Some(next_parent_sibling);
}
}
// Go back up the tree to find the next available node
current_parent = self.tree.get_parent(current_parent.unwrap());
}
}
} else if self.current_node == self.starting_node {
// We've somehow made our way back up to the starting node -> end iteration
return None;
}
}
None
}
}
/// An iterator that performs a single-path traversal up a tree starting
/// from a given node.
pub struct UpwardIterator<'a> {
tree: &'a Tree,
current_node: Option<WrappedIndex>,
include_self: bool,
}
impl<'a> UpwardIterator<'a> {
/// Creates a new [`UpwardIterator`] for the given [tree] and [node].
///
/// # Arguments
///
/// * `tree`: The tree to be iterated.
/// * `starting_node`: The node to start iterating from.
/// * `include_self`: Whether or not to include the starting node in the output.
///
///
/// [tree]: Tree
/// [node]: WrappedIndex
pub fn new(tree: &'a Tree, starting_node: Option<WrappedIndex>, include_self: bool) -> Self {
Self {
tree,
current_node: starting_node,
include_self,
}
}
}
impl<'a> Iterator for UpwardIterator<'a> {
type Item = WrappedIndex;
fn next(&mut self) -> Option<Self::Item> {
if self.include_self {
self.include_self = false;
return self.current_node;
}
self.current_node = self.tree.get_parent(self.current_node?);
self.current_node
}
}
pub struct ChildIterator<'a> {
pub tree: &'a Tree,
pub current_node: Option<WrappedIndex>,
}
impl<'a> Iterator for ChildIterator<'a> {
type Item = WrappedIndex;
fn next(&mut self) -> Option<Self::Item> {
if let Some(entity) = self.current_node {
self.current_node = self.tree.get_next_sibling(entity);
return Some(entity);
}
None
}
}
impl<'a> Hierarchy<'a> for Tree {
type DownIter = DownwardIterator<'a>;
type UpIter = Rev<std::vec::IntoIter<WrappedIndex>>;
type Item = WrappedIndex;
type ChildIter = ChildIterator<'a>;
fn up_iter(&'a self) -> Self::UpIter {
// We need to convert the downwards iterator into a Vec so that we can reverse it.
// Morphorm expects the iteration to be the same as Self::DownIter but "in reverse".
self.flatten().into_iter().rev()
}
fn down_iter(&'a self) -> Self::DownIter {
DownwardIterator::new(self, self.root_node, true)
}
fn child_iter(&'a self, node: WrappedIndex) -> Self::ChildIter {
let first_child = self.get_first_child(node);
ChildIterator {
tree: self,
current_node: first_child,
}
}
fn parent(&self, node: WrappedIndex) -> Option<WrappedIndex> {
if let Some(parent_index) = self.parents.get(&node) {
return Some(*parent_index);
}
None
}
fn is_first_child(&self, node: WrappedIndex) -> bool {
if let Some(parent) = self.parent(node) {
if let Some(first_child) = self.get_first_child(parent) {
return first_child == node;
}
}
false
}
fn is_last_child(&self, node: WrappedIndex) -> bool {
if let Some(parent) = self.parent(node) {
if let Some(parent_children) = self.children.get(&parent) {
if let Some(last_child) = parent_children.last() {
return *last_child == node;
}
}
}
false
}
}
#[cfg(test)]
mod tests {
use crate::tree::{DownwardIterator, UpwardIterator};
use crate::tree::{Tree, WrappedIndex};
use bevy::prelude::Entity;
#[test]
fn should_descend_tree() {
let mut tree = Tree::default();
// Tree Structure:
// A
// B C
// D E F
// G
let a = WrappedIndex(Entity::from_raw(0));
let b = WrappedIndex(Entity::from_raw(1));
let c = WrappedIndex(Entity::from_raw(2));
let d = WrappedIndex(Entity::from_raw(3));
let e = WrappedIndex(Entity::from_raw(4));
let f = WrappedIndex(Entity::from_raw(5));
let g = WrappedIndex(Entity::from_raw(6));
tree.add(a, None);
tree.add(b, Some(a));
tree.add(c, Some(a));
tree.add(d, Some(b));
tree.add(e, Some(b));
tree.add(g, Some(d));
tree.add(f, Some(c));
macro_rules! assert_descent {
($title: literal : $start: ident -> [ $($node: ident),* $(,)? ] ) => {
let iter = DownwardIterator::new(&tree, Some($start), true);
let expected_nodes = vec![$start, $($node),*];