Skip to content
Snippets Groups Projects
tree.rs 45.8 KiB
Newer Older
Louis's avatar
Louis committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
use bevy::prelude::{Entity, World};
use bevy::utils::HashMap;
use morphorm::Hierarchy;
use std::iter::Rev;

use crate::context::WidgetName;
use crate::node::WrappedIndex;

#[derive(Default, Debug, Clone, PartialEq, Eq)]
pub struct Tree {
    pub children: HashMap<WrappedIndex, Vec<WrappedIndex>>,
    pub parents: HashMap<WrappedIndex, WrappedIndex>,
    pub root_node: Option<WrappedIndex>,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Change {
    Unchanged,
    Inserted,
    Deleted,
    Updated,
    Moved,
}

#[derive(Default, Debug, Clone)]
pub struct ChildChanges {
    pub changes: Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)>,
    pub child_changes: Vec<(usize, ChildChanges)>,
}

impl ChildChanges {
    pub fn has_changes(&self) -> bool {
        !self
            .changes
            .iter()
            .all(|change| change.3.iter().all(|c| *c == Change::Unchanged))
    }

    pub fn debug_print(&self, world: &World) {
        for (index, child, parent, changes) in self.changes.iter() {
            if let Some(entity_ref) = world.get_entity(child.0) {
                let name = entity_ref
                    .get::<WidgetName>()
                    .map(|n| n.0.clone())
                    .unwrap_or("Unknown".into());
                println!(
                    "[name: {}, index: {}, entity: {}, parent: {},  change: {:?}]",
                    name,
                    index,
                    child.0.index(),
                    parent.0.index(),
                    changes
                );
            }
        }
    }
}

impl From<Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)>> for ChildChanges {
    fn from(changes: Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)>) -> Self {
        Self {
            changes,
            child_changes: Vec::new(),
        }
    }
}

impl Tree {
    pub fn add(&mut self, index: WrappedIndex, parent: Option<WrappedIndex>) {
        if let Some(parent_index) = parent {
            self.parents.insert(index, parent_index);
            if let Some(parent_children) = self.children.get_mut(&parent_index) {
                parent_children.push(index);
            } else {
                self.children.insert(parent_index, vec![index]);
            }
        } else {
            self.root_node = Some(index);
        }
    }

    pub fn remove_without_children(&mut self, index: WrappedIndex) {
        self.parents.remove(&index);
        self.children.remove(&index);
    }

    /// Remove the given node and recursively removes its descendants
    pub fn remove(&mut self, index: WrappedIndex) -> Vec<WrappedIndex> {
        let parent = self.parents.remove(&index);
        if let Some(parent) = parent {
            let children = self
                .children
                .remove(&index)
                .unwrap_or_default()
                .into_iter()
                .flat_map(|child| self.remove(child))
                .collect();
            if let Some(siblings) = self.children.get_mut(&parent) {
                siblings.retain(|node| *node != index);
            }

            children
        } else {
            // Is root node
            if let Some(root_node) = self.root_node {
                if root_node == index {
                    self.root_node = None;
                    self.parents.clear();
                    self.children.clear();
                }
            }
            Vec::default()
        }
    }

    pub fn remove_children(&mut self, children_to_remove: Vec<WrappedIndex>) {
        for child in children_to_remove.iter() {
            self.remove(*child);
        }
    }

    /// Removes the current node and reparents any children to its current parent.
    ///
    /// Children fill at the original index of the removed node amongst its siblings.
    ///
    /// Panics if called on the root node
    pub fn remove_and_reparent(&mut self, index: WrappedIndex) {
        let parent = self.parents.remove(&index);
        if let Some(parent) = parent {
            let mut insertion_index = 0usize;

            // === Get Sibling Index === //
            if let Some(siblings) = self.children.get_mut(&parent) {
                insertion_index = siblings.iter().position(|node| *node == index).unwrap();
            }

            // === Reparent Children === //
            if let Some(children) = self.children.remove(&index) {
                for child in children.iter() {
                    self.parents.insert(*child, parent);
                }
                if let Some(siblings) = self.children.get_mut(&parent) {
                    siblings.splice(insertion_index..insertion_index + 1, children);
                }
            }
        } else {
            panic!("Cannot reparent a root node's children")
        }
    }

    /// Replace the given node with another, transferring the parent and child relationships over to the replacement node
    pub fn replace(&mut self, index: WrappedIndex, replace_with: WrappedIndex) {
        // === Update Parent === //
        if let Some(parent) = self.parents.remove(&index) {
            self.parents.insert(replace_with, parent);
            if let Some(siblings) = self.children.get_mut(&parent) {
                let idx = siblings.iter().position(|node| *node == index).unwrap();
                siblings[idx] = replace_with;
            }
        } else {
            self.root_node = Some(replace_with);
        }

        // === Update Children === //
        if let Some(children) = self.children.remove(&index) {
            for child in children.iter() {
                self.parents.insert(*child, replace_with);
            }
            self.children.insert(replace_with, children);
        }
    }

    /// Returns true if the given node is in this tree
    pub fn contains(&self, index: WrappedIndex) -> bool {
        Some(index) == self.root_node
            || self.parents.contains_key(&index)
            || self.children.contains_key(&index)
    }

    /// Get the number of nodes in this tree
    pub fn len(&self) -> usize {
        if self.root_node.is_some() {
            self.parents.len() + 1
        } else {
            0
        }
    }

    /// Returns true if this tree has no nodes
    pub fn is_empty(&self) -> bool {
        self.root_node.is_none() && self.parents.is_empty() && self.children.is_empty()
    }

    /// Returns true if the given node is a descendant of another node
    pub fn is_descendant(&self, descendant: WrappedIndex, of_node: WrappedIndex) -> bool {
        let mut index = descendant;
        while let Some(parent) = self.get_parent(index) {
            index = parent;
            if parent == of_node {
                return true;
            }
        }
        false
    }

    pub fn flatten(&self) -> Vec<WrappedIndex> {
        if self.root_node.is_none() {
            return Vec::new();
        }

        DownwardIterator::new(self, Some(self.root_node.unwrap()), true).collect::<Vec<_>>()
    }

    pub fn flatten_node(&self, root_node: WrappedIndex) -> Vec<WrappedIndex> {
        if self.root_node.is_none() {
            return Vec::new();
        }

        DownwardIterator::new(self, Some(root_node), true).collect::<Vec<_>>()
    }

    pub fn flatten_node_up(&self, root_node: WrappedIndex) -> Vec<WrappedIndex> {
        if self.root_node.is_none() {
            return Vec::new();
        }

        UpwardIterator::new(self, Some(root_node), true).collect::<Vec<_>>()
    }

    pub fn get_parent(&self, index: WrappedIndex) -> Option<WrappedIndex> {
        self.parents.get(&index).copied()
    }

    pub fn get_first_child(&self, index: WrappedIndex) -> Option<WrappedIndex> {
        self.children
            .get(&index)
            .and_then(|children| children.first().copied())
    }

    pub fn get_last_child(&self, index: WrappedIndex) -> Option<WrappedIndex> {
        self.children
            .get(&index)
            .and_then(|children| children.last().copied())
    }

    pub fn get_next_sibling(&self, index: WrappedIndex) -> Option<WrappedIndex> {
        if let Some(parent_index) = self.get_parent(index) {
            self.children.get(&parent_index).and_then(|children| {
                children
                    .iter()
                    .position(|child| *child == index)
                    .and_then(|child_index| children.get(child_index + 1).copied())
            })
        } else {
            None
        }
    }

    pub fn get_prev_sibling(&self, index: WrappedIndex) -> Option<WrappedIndex> {
        if let Some(parent_index) = self.get_parent(index) {
            self.children.get(&parent_index).and_then(|children| {
                children
                    .iter()
                    .position(|child| *child == index)
                    .and_then(|child_index| {
                        if child_index > 0 {
                            children.get(child_index - 1).copied()
                        } else {
                            None
                        }
                    })
            })
        } else {
            None
        }
    }

    pub fn diff_children(
        &self,
        other_tree: &Tree,
        root_node: WrappedIndex,
        depth: u32,
    ) -> ChildChanges {
        let children_a = self.children.get(&root_node);
        let children_b = other_tree.children.get(&root_node);

        // Handle both easy cases first..
        if let (Some(children_a), None) = (children_a, children_b) {
            return children_a
                .iter()
                .enumerate()
                .map(|(child_id, child_node)| {
                    (child_id, *child_node, root_node, vec![Change::Deleted])
                })
                .collect::<Vec<_>>()
                .into();
        } else if let (None, Some(children_b)) = (children_a, children_b) {
            return children_b
                .iter()
                .enumerate()
                .map(|(child_id, child_node)| {
                    (child_id, *child_node, root_node, vec![Change::Inserted])
                })
                .collect::<Vec<_>>()
                .into();
        } else if children_a.is_none() && children_b.is_none() {
            return vec![].into();
        }

        let mut child_changes = ChildChanges::default();

        let children_a = children_a
            .unwrap()
            .iter()
            .copied()
            .enumerate()
            .collect::<Vec<(usize, WrappedIndex)>>();
        let children_b = children_b
            .unwrap()
            .iter()
            .copied()
            .enumerate()
            .collect::<Vec<(usize, WrappedIndex)>>();

        let deleted_nodes = children_a
            .iter()
            // Find matching child
            .filter(|(_, node)| !children_b.iter().any(|(_, node_b)| node == node_b))
            .map(|(id, node)| (*id, *node, root_node, vec![Change::Deleted]))
            .collect::<Vec<_>>();
        child_changes.changes.extend(deleted_nodes);

        let inserted_and_changed = children_b
            .iter()
            .map(|(id, node)| {
                let old_node = children_a.get(*id);
                let inserted = old_node.is_none()
                    || old_node.is_some()
                        && !children_a.iter().any(|(_, old_node)| node == old_node);

                let value_changed = if let Some((_, old_node)) = old_node {
                    node != old_node
                } else {
                    false
                };
                let changed = match (inserted, value_changed) {
                    (true, false) => Change::Inserted,
                    (true, true) => Change::Inserted,
                    (false, true) => Change::Updated,
                    (false, false) => Change::Unchanged,
                };

                (*id, *node, root_node, vec![changed])
            })
            .collect::<Vec<_>>();
        child_changes.changes.extend(inserted_and_changed);

        if !child_changes.changes.is_empty()
            && child_changes.changes.iter().any(|a| {
                child_changes
                    .changes
                    .iter()
                    .any(|b| a.1 == b.1 && a.3 != b.3)
            })
        {
            dbg!("ABORT!");
            dbg!(&children_a);
            dbg!(&children_b);
        }

        let flat_tree_diff_nodes = child_changes
            .changes
            .iter()
            .map(|(id, node, parent_node, change)| {
                if change[0] == Change::Deleted {
                    return (*id, *node, *parent_node, change.clone());
                } else if change[0] == Change::Inserted {
                    let child_id = other_tree
                        .children
                        .get(parent_node)
                        .unwrap()
                        .iter()
                        .position(|child| child == node)
                        .unwrap();
                    return (child_id, *node, *parent_node, change.clone());
                }

                let parent_a = self.parent(children_a.get(*id).unwrap().1);
                let parent_b = self.parent(*node);
                let definitely_moved =
                    if let (Some(parent_a), Some(parent_b)) = (parent_a, parent_b) {
                        parent_a != parent_b
                            || (parent_a == parent_b
                                && *node != children_a.get(*id).unwrap().1
                                && children_a.iter().any(|(_, node_b)| node == node_b))
                    } else {
                        false
                    };

                if definitely_moved {
                    let change = if change[0] == Change::Unchanged {
                        vec![Change::Moved]
                    } else if change[0] == Change::Updated {
                        vec![Change::Moved, Change::Updated]
                    } else {
                        vec![Change::Moved]
                    };
                    return (*id, *node, *parent_node, change);
                }

                (*id, *node, *parent_node, change.clone())
            })
            .collect::<Vec<_>>();
        child_changes.changes = flat_tree_diff_nodes;

        if depth > 0 {
            for (child_id, child_node) in children_a.iter() {
                // Add children of child changes.
                let children_of_child_changes =
                    self.diff_children(other_tree, *child_node, depth - 1);
                child_changes
                    .child_changes
                    .push((*child_id, children_of_child_changes));
            }
        }

        child_changes
    }

    pub fn diff(
        &self,
        other_tree: &Tree,
        root_node: WrappedIndex,
    ) -> Vec<(usize, WrappedIndex, WrappedIndex, Vec<Change>)> {
        let mut changes = Vec::new();

        let mut tree1 = self
            .flatten_node(root_node)
            .into_iter()
            .enumerate()
            .collect::<Vec<_>>();
        let _root_a = tree1.remove(0);
        let mut tree2 = other_tree
            .flatten_node(root_node)
            .into_iter()
            .enumerate()
            .collect::<Vec<_>>();
        let _root_b = tree2.remove(0);

        let deleted_nodes = tree1
            .iter()
            // Find matching child
            .filter(|(_, node)| !tree2.iter().any(|(_, node_b)| node == node_b))
            .map(|(id, node)| {
                (
                    *id - 1,
                    *node,
                    self.get_parent(*node).unwrap(),
                    vec![Change::Deleted],
                )
            })
            .collect::<Vec<_>>();
        changes.extend(deleted_nodes);

        let inserted_and_changed = tree2
            .iter()
            .map(|(id, node)| {
                let old_node = tree1.get(*id - 1);
                let inserted =
                    old_node.is_some() && !tree1.iter().any(|(_, old_node)| node == old_node);

                let value_changed = if let Some((_, old_node)) = old_node {
                    node != old_node
                } else {
                    false
                };
                let changed = match (inserted, value_changed) {
                    (true, false) => Change::Inserted,
                    (true, true) => Change::Inserted,
                    (false, true) => Change::Updated,
                    (false, false) => Change::Unchanged,
                };

                (
                    *id - 1,
                    *node,
                    other_tree.get_parent(*node).unwrap(),
                    vec![changed],
                )
            })
            .collect::<Vec<_>>();
        changes.extend(inserted_and_changed);

        let flat_tree_diff_nodes = changes
            .iter()
            .map(|(id, node, parent_node, change)| {
                if change[0] == Change::Deleted {
                    return (0, *node, *parent_node, change.clone());
                } else if change[0] == Change::Inserted {
                    let child_id = other_tree
                        .children
                        .get(parent_node)
                        .unwrap()
                        .iter()
                        .position(|child| child == node)
                        .unwrap();
                    return (child_id, *node, *parent_node, change.clone());
                }

                let parent_a = self.parent(tree1.get(*id).unwrap().1);
                let parent_b = self.parent(*node);
                let definitely_moved =
                    if let (Some(parent_a), Some(parent_b)) = (parent_a, parent_b) {
                        parent_a != parent_b
                            || (parent_a == parent_b
                                && *node != tree1.get(*id).unwrap().1
                                && tree1.iter().any(|(_, node_b)| node == node_b))
                    } else {
                        false
                    };

                if definitely_moved {
                    let change = if change[0] == Change::Unchanged {
                        vec![Change::Moved]
                    } else if change[0] == Change::Updated {
                        vec![Change::Moved, Change::Updated]
                    } else {
                        vec![Change::Moved]
                    };
                    return (*id, *node, *parent_node, change);
                }

                (*id, *node, *parent_node, change.clone())
            })
            .collect::<Vec<_>>();

        flat_tree_diff_nodes
    }

    pub fn merge(
        &mut self,
        other: &Tree,
        root_node: WrappedIndex,
        changes: ChildChanges,
        depth: u32,
    ) {
        let has_changes = changes.has_changes();
        let children_a = self.children.get(&root_node).cloned();
        let children_b = other.children.get(&root_node);
        if children_a.is_none() && children_b.is_none() {
            // Nothing to do.
            return;
        } else if let (None, Some(children_b)) = (children_a.as_ref(), children_b) {
            // Simple case of moving all children over to A.
            self.children.insert(root_node, children_b.clone());
            for (parent, children) in self.children.iter() {
                for child in children.iter() {
                    self.parents.insert(*child, *parent);
                }
            }
            return;
        } else if let (Some(children_a), None) = (children_a.as_ref(), children_b) {
            // Case for erasing all
            if has_changes {
                for child in children_a.iter() {
                    self.parents.remove(child);
                }
                self.children.remove(&root_node);
            }
            return;
        }
        let mut children_a = children_a.unwrap();
        let children_b = children_b.unwrap();
        children_a.resize(children_b.len(), WrappedIndex(Entity::from_raw(0)));

        for (id, node, parent_node, change) in changes.changes.iter() {
            match change.as_slice() {
                [Change::Deleted] => {
                    self.parents.remove(node);
                    if children_a.get(*id).is_some() {
                        children_a[*id] = WrappedIndex(Entity::from_raw(0));
                    }
                    self.remove(*node);
                }
                [Change::Inserted] => {
                    children_a[*id] = *node;
                    self.parents.insert(*node, *parent_node);
                }
                [Change::Moved, Change::Updated] => {
                    children_a[*id] = *node;
                    self.parents.insert(*node, *parent_node);
                }
                [Change::Updated] => {
                    children_a[*id] = *node;
                }
                _ => {}
            }
        }

        for (id, _node, _parent_node, _change) in changes.changes.iter() {
            if let Some(child) = children_a.get(*id) {
                if child.0.index() == 0 {
                    children_a.remove(*id);
                }
            }
        }

        self.children.insert(root_node, children_a);

        if depth > 0 {
            for (child_id, children_of_child_changes) in changes.child_changes {
                self.merge(
                    other,
                    changes.changes[child_id].1,
                    children_of_child_changes,
                    depth - 1,
                );
            }
        }
    }

    pub fn remove_child_from_node(&mut self, parent: &WrappedIndex, child: &WrappedIndex) {
        if let Some(children) = self.children.get_mut(parent) {
            let child_index = children.iter().position(|c| c == child);

            if let Some(child_index) = child_index {
                children.remove(child_index);
            }
        }
    }

    /// Copies a specific node and it's children from other_tree to self.
    /// Note: Does not deep copy.
    pub fn copy_from_point(&mut self, other_tree: &Tree, root_node: WrappedIndex) {
        if let Some(children) = other_tree.children.get(&root_node) {
            self.children.insert(root_node, children.clone());
            for child in children.iter() {
                self.parents.insert(*child, root_node);
            }
        }
    }

    /// Dumps the tree's current state to the console
    ///
    /// To dump only a section of the tree, use [dump_at] instead.
    ///
    /// # Arguments
    ///
    /// * `widgets`: Optionally, provide the current widgets to include metadata about each widget
    ///
    /// returns: ()
    pub fn dump(&self) {
        if let Some(root) = self.root_node {
            self.dump_at(root);
        }
    }

    /// Sometimes we need to see the entire tree even dangling nodes.
    /// This function will display everything.
    pub fn dump_all(&self, world: &World) {
        let mut children = self.children.iter().collect::<Vec<_>>();
        children.sort_by(|(a, _), (b, _)| a.0.index().partial_cmp(&b.0.index()).unwrap());

        for (parent, children) in children.iter() {
            let name = if let Some(entity_ref) = world.get_entity(parent.0) {
                entity_ref.get::<WidgetName>().map(|n| n.0.clone())
            } else {
                None
            };
            println!(
                "[{}::{}]",
                name.unwrap_or("Unknown".into()),
                parent.0.index()
            );
            for child in children.iter() {
                let name = if let Some(entity_ref) = world.get_entity(parent.0) {
                    entity_ref.get::<WidgetName>().map(|n| n.0.clone())
                } else {
                    None
                };
                println!(
                    "    [{}::{}]",
                    name.unwrap_or("Unknown".into()),
                    child.0.index()
                );
            }
            println!();
        }
    }

    /// Sometimes we need to see the entire tree even dangling nodes.
    /// This function will display everything.
    pub fn dump_all_at(&self, world: Option<&World>, parent: Entity) {
        let no_children = vec![];
        let children = self
            .children
            .get(&WrappedIndex(parent))
            .unwrap_or(&no_children);

        let name: Option<String> = if let Some(world) = world {
            if let Some(entity_ref) = world.get_entity(parent) {
                entity_ref.get::<WidgetName>().map(|n| n.0.clone())
            } else {
                None
            }
        } else {
            None
        };
        println!("[{}::{}]", name.unwrap_or("Unknown".into()), parent.index());
        for child in children.iter() {
            let name = if let Some(world) = world {
                if let Some(entity_ref) = world.get_entity(child.0) {
                    entity_ref.get::<WidgetName>().map(|n| n.0.clone())
                } else {
                    None
                }
            } else {
                None
            };
            println!(
                "    [{}::{}]",
                name.unwrap_or("Unknown".into()),
                child.0.index()
            );
        }
    }

    /// Dumps a section of the tree's current state to the console (starting from a specific index)
    ///
    /// To dump the entire tree, use [dump] instead.
    ///
    /// # Arguments
    ///
    /// * `start_index`: The index to start recursing from (including itself)
    /// * `widgets`: Optionally, provide the current widgets to include metadata about each widget
    ///
    /// returns: ()
    pub fn dump_at(&self, start_index: WrappedIndex) {
        self.dump_at_internal(start_index, 0);

        // let mut depth = 0;
        // for child in self.down_iter_at(start_index, true) {
        //     let indent = "  ".repeat(depth);
        //     let raw_parts = child.0.index();
        //     println!("{} [{}]", indent, raw_parts);
        //     depth += 1;
        // }
    }

    fn dump_at_internal(&self, start_index: WrappedIndex, depth: usize) {
        let indent = "  ".repeat(depth);
        let raw_parts = start_index.0.index();
        println!("{} [{}]", indent, raw_parts,);

        if let Some(children) = self.children.get(&start_index) {
            for node_index in children {
                self.dump_at_internal(*node_index, depth + 1);
            }
        }
    }

    pub fn down_iter_at(&self, node: WrappedIndex, include_self: bool) -> DownwardIterator {
        DownwardIterator::new(self, Some(node), include_self)
    }
}

/// An iterator that performs a depth-first traversal down a tree starting
/// from a given node.
pub struct DownwardIterator<'a> {
    pub tree: &'a Tree,
    pub starting_node: Option<WrappedIndex>,
    pub current_node: Option<WrappedIndex>,
    pub include_self: bool,
}

impl<'a> DownwardIterator<'a> {
    /// Creates a new [`DownwardIterator`] for the given [tree] and [node].
    ///
    /// # Arguments
    ///
    /// * `tree`: The tree to be iterated.
    /// * `starting_node`: The node to start iterating from.
    /// * `include_self`: Whether or not to include the starting node in the output.
    ///
    ///
    /// [tree]: Tree
    /// [node]: WrappedIndex
    pub fn new(tree: &'a Tree, starting_node: Option<WrappedIndex>, include_self: bool) -> Self {
        Self {
            tree,
            starting_node,
            current_node: starting_node,
            include_self,
        }
    }
}

impl<'a> Iterator for DownwardIterator<'a> {
    type Item = WrappedIndex;

    fn next(&mut self) -> Option<Self::Item> {
        if self.include_self {
            self.include_self = false;
            return self.current_node;
        }

        if let Some(current_index) = self.current_node {
            if let Some(first_child) = self.tree.get_first_child(current_index) {
                // Descend!
                self.current_node = Some(first_child);
                return Some(first_child);
            } else if self.current_node != self.starting_node {
                // if the starting node has at least 1 child, continue checking downwards,
                // otherwise do not check siblings
                if let Some(next_sibling) = self.tree.get_next_sibling(current_index) {
                    // Continue from the next sibling
                    self.current_node = Some(next_sibling);
                    return Some(next_sibling);
                } else {
                    let mut current_parent = self.tree.get_parent(current_index);
                    while current_parent.is_some() {
                        if current_parent == self.starting_node {
                            // Parent is starting node so no need to continue -> end iteration
                            return None;
                        }
                        if let Some(current_parent) = current_parent {
                            if let Some(next_parent_sibling) =
                                self.tree.get_next_sibling(current_parent)
                            {
                                // Continue from the sibling of the parent
                                self.current_node = Some(next_parent_sibling);
                                return Some(next_parent_sibling);
                            }
                        }
                        // Go back up the tree to find the next available node
                        current_parent = self.tree.get_parent(current_parent.unwrap());
                    }
                }
            } else if self.current_node == self.starting_node {
                // We've somehow made our way back up to the starting node -> end iteration
                return None;
            }
        }

        None
    }
}

/// An iterator that performs a single-path traversal up a tree starting
/// from a given node.
pub struct UpwardIterator<'a> {
    tree: &'a Tree,
    current_node: Option<WrappedIndex>,
    include_self: bool,
}

impl<'a> UpwardIterator<'a> {
    /// Creates a new [`UpwardIterator`] for the given [tree] and [node].
    ///
    /// # Arguments
    ///
    /// * `tree`: The tree to be iterated.
    /// * `starting_node`: The node to start iterating from.
    /// * `include_self`: Whether or not to include the starting node in the output.
    ///
    ///
    /// [tree]: Tree
    /// [node]: WrappedIndex
    pub fn new(tree: &'a Tree, starting_node: Option<WrappedIndex>, include_self: bool) -> Self {
        Self {
            tree,
            current_node: starting_node,
            include_self,
        }
    }
}

impl<'a> Iterator for UpwardIterator<'a> {
    type Item = WrappedIndex;

    fn next(&mut self) -> Option<Self::Item> {
        if self.include_self {
            self.include_self = false;
            return self.current_node;
        }

        self.current_node = self.tree.get_parent(self.current_node?);
        self.current_node
    }
}

pub struct ChildIterator<'a> {
    pub tree: &'a Tree,
    pub current_node: Option<WrappedIndex>,
}

impl<'a> Iterator for ChildIterator<'a> {
    type Item = WrappedIndex;
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(entity) = self.current_node {
            self.current_node = self.tree.get_next_sibling(entity);
            return Some(entity);
        }

        None
    }
}

impl<'a> Hierarchy<'a> for Tree {
    type DownIter = DownwardIterator<'a>;
    type UpIter = Rev<std::vec::IntoIter<WrappedIndex>>;
    type Item = WrappedIndex;
    type ChildIter = ChildIterator<'a>;

    fn up_iter(&'a self) -> Self::UpIter {
        // We need to convert the downwards iterator into a Vec so that we can reverse it.
        // Morphorm expects the iteration to be the same as Self::DownIter but "in reverse".
        self.flatten().into_iter().rev()
    }

    fn down_iter(&'a self) -> Self::DownIter {
        DownwardIterator::new(self, self.root_node, true)
    }

    fn child_iter(&'a self, node: WrappedIndex) -> Self::ChildIter {
        let first_child = self.get_first_child(node);
        ChildIterator {
            tree: self,
            current_node: first_child,
        }
    }

    fn parent(&self, node: WrappedIndex) -> Option<WrappedIndex> {
        if let Some(parent_index) = self.parents.get(&node) {
            return Some(*parent_index);
        }

        None
    }

    fn is_first_child(&self, node: WrappedIndex) -> bool {
        if let Some(parent) = self.parent(node) {
            if let Some(first_child) = self.get_first_child(parent) {
                return first_child == node;
            }
        }

        false
    }

    fn is_last_child(&self, node: WrappedIndex) -> bool {
        if let Some(parent) = self.parent(node) {
            if let Some(parent_children) = self.children.get(&parent) {
                if let Some(last_child) = parent_children.last() {
                    return *last_child == node;
                }
            }
        }

        false
    }
}

#[cfg(test)]
mod tests {
    use crate::tree::{DownwardIterator, UpwardIterator};
    use crate::tree::{Tree, WrappedIndex};
    use bevy::prelude::Entity;

    #[test]
    fn should_descend_tree() {
        let mut tree = Tree::default();

        // Tree Structure:
        //      A
        //    B   C
        //   D E  F
        //   G

        let a = WrappedIndex(Entity::from_raw(0));
        let b = WrappedIndex(Entity::from_raw(1));
        let c = WrappedIndex(Entity::from_raw(2));
        let d = WrappedIndex(Entity::from_raw(3));
        let e = WrappedIndex(Entity::from_raw(4));
        let f = WrappedIndex(Entity::from_raw(5));
        let g = WrappedIndex(Entity::from_raw(6));

        tree.add(a, None);
        tree.add(b, Some(a));
        tree.add(c, Some(a));
        tree.add(d, Some(b));
        tree.add(e, Some(b));
        tree.add(g, Some(d));
        tree.add(f, Some(c));

        macro_rules! assert_descent {
            ($title: literal : $start: ident -> [ $($node: ident),* $(,)? ] ) => {
                let iter = DownwardIterator::new(&tree, Some($start), true);
                let expected_nodes = vec![$start, $($node),*];