Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use crate::msdf::{signed_distance::SignedDistance, vector::Vector2, EdgeColor};
use super::{
equation_solver::{self, fabs},
mix, non_zero_sign, EdgeSegment,
};
pub const MSDFGEN_CUBIC_SEARCH_STARTS: usize = 4;
pub const MSDFGEN_CUBIC_SEARCH_STEPS: usize = 4;
pub fn direction(p0: Vector2, p1: Vector2, p2: Vector2, p3: Vector2, param: f64) -> Vector2 {
let tangent = mix(
mix(p1 - p0, p2 - p1, param),
mix(p2 - p1, p3 - p2, param),
param,
);
if !tangent.is_zero() {
if param == 0.0 {
return p2 - p0;
}
if param == 1.0 {
return p3 - p1;
}
}
tangent
}
pub fn point(p0: Vector2, p1: Vector2, p2: Vector2, p3: Vector2, param: f64) -> Vector2 {
let p12 = mix(p1, p2, param);
mix(
mix(mix(p0, p1, param), p12, param),
mix(p12, mix(p2, p3, param), param),
param,
)
}
pub fn find_bounds(
p0: Vector2,
p1: Vector2,
p2: Vector2,
p3: Vector2,
l: &mut f64,
b: &mut f64,
r: &mut f64,
t: &mut f64,
) {
Vector2::point_bounds(p0, l, b, r, t);
Vector2::point_bounds(p3, l, b, r, t);
let a0 = p1 - p0;
let a1 = 2.0 * (p2 - p1 - a0);
let a2 = p3 - 3.0 * p2 + 3.0 * p1 - p0;
let (solutions, result) = equation_solver::solve_quadratic(a2.x, a1.x, a0.x);
for i in 0..solutions {
let par = result[i as usize];
if par > 0.0 && par < 1.0 {
Vector2::point_bounds(point(p0, p1, p2, p3, par), l, b, r, t);
}
}
let (solutions, result) = equation_solver::solve_quadratic(a2.y, a1.y, a0.y);
for i in 0..solutions {
let par = result[i as usize];
if par > 0.0 && par < 1.0 {
Vector2::point_bounds(point(p0, p1, p2, p3, par), l, b, r, t);
}
}
}
pub fn split_in_thirds(
p0: Vector2,
p1: Vector2,
p2: Vector2,
p3: Vector2,
color: EdgeColor,
) -> (EdgeSegment, EdgeSegment, EdgeSegment) {
(
EdgeSegment::new_cubic(
p0,
if p0 == p1 { p0 } else { mix(p0, p1, 1.0 / 3.0) },
mix(mix(p0, p1, 1.0 / 3.0), mix(p1, p2, 1.0 / 3.0), 1.0 / 3.0),
point(p0, p1, p2, p3, 1.0 / 3.0),
color,
),
EdgeSegment::new_cubic(
point(p0, p1, p2, p3, 1.0 / 3.0),
mix(
mix(mix(p0, p1, 1.0 / 3.0), mix(p1, p2, 1.0 / 3.0), 1.0 / 3.0),
mix(mix(p1, p2, 1.0 / 3.0), mix(p2, p3, 1.0 / 3.0), 1.0 / 3.0),
2.0 / 3.0,
),
mix(
mix(mix(p0, p1, 2.0 / 3.0), mix(p1, p2, 2.0 / 3.0), 2.0 / 3.0),
mix(mix(p1, p2, 2.0 / 3.0), mix(p2, p3, 2.0 / 3.0), 2.0 / 3.0),
1.0 / 3.0,
),
point(p0, p1, p2, p3, 2.0 / 3.0),
color,
),
EdgeSegment::new_cubic(
point(p0, p1, p2, p3, 2.0 / 3.0),
mix(mix(p1, p2, 2.0 / 3.0), mix(p2, p3, 2.0 / 3.0), 2.0 / 3.0),
if p2 == p3 { p3 } else { mix(p2, p3, 2.0 / 3.0) },
p3,
color,
),
)
}
pub fn signed_distance(
p0: Vector2,
p1: Vector2,
p2: Vector2,
p3: Vector2,
origin: Vector2,
) -> (SignedDistance, f64) {
let qa = p0 - origin;
let ab = p1 - p0;
let br = p2 - p1 - ab;
let as_ = (p3 - p2) - (p2 - p1) - br;
let mut ep_dir = direction(p0, p1, p2, p3, 0.0);
let mut min_distance = non_zero_sign(Vector2::cross_product(ep_dir, qa)) as f64 * qa.length();
let mut param = -Vector2::dot_product(qa, ep_dir) / Vector2::dot_product(ep_dir, ep_dir);
{
ep_dir = direction(p0, p1, p2, p3, 1.0);
let distance = (p3 - origin).length();
if distance.abs() < min_distance.abs() {
min_distance =
non_zero_sign(Vector2::cross_product(ep_dir, p3 - origin)) as f64 * distance;
param = Vector2::dot_product(ep_dir - (p3 - origin), ep_dir)
/ Vector2::dot_product(ep_dir, ep_dir);
}
}
for i in 0..MSDFGEN_CUBIC_SEARCH_STARTS {
let mut t = (i / MSDFGEN_CUBIC_SEARCH_STARTS) as f64;
let mut qe = qa + 3.0 * t * ab + 3.0 * t * t * br + t * t * t * as_;
for _ in 0..MSDFGEN_CUBIC_SEARCH_STEPS {
let d1 = 3.0 * ab + 6.0 * t * br + 3.0 * t * t * as_;
let d2 = 6.0 * br + 6.0 * t * as_;
t -= Vector2::dot_product(qe, d1)
/ (Vector2::dot_product(d1, d1) + Vector2::dot_product(qe, d2));
if !(0.0..=1.0).contains(&t) {
break;
}
qe = qa + 3.0 * t * ab + 3.0 * t * t * br + t * t * t * as_;
let distance = qe.length();
if distance < min_distance.abs() {
min_distance = non_zero_sign(Vector2::cross_product(d1, qe)) as f64 * distance;
param = t;
}
// let qpt = point(p0, p1, p2, p3, t) - origin;
// let distance = non_zero_sign(Vector2::cross_product(direction(p0, p1, p2, p3, t), qpt))
// as f64
// * qpt.length();
// if fabs(distance) < fabs(min_distance) {
// min_distance = distance;
// param = t;
// }
// if step == MSDFGEN_CUBIC_SEARCH_STEPS {
// break;
// }
// let d1 = 3.0 * as_ * t * t + 6.0 * br * t + 3.0 * ab;
// let d2 = 6.0 * as_ * t + 6.0 * br;
// t -= Vector2::dot_product(qpt, d1)
// / (Vector2::dot_product(d1, d1) + Vector2::dot_product(qpt, d2));
// if t < 0.0 || t > 1.0 {
// break;
// }
}
}
if (0.0..=1.0).contains(¶m) {
(SignedDistance::new(min_distance, 0.0), param)
} else if param < 0.5 {
(
SignedDistance::new(
min_distance,
fabs(Vector2::dot_product(
direction(p0, p1, p2, p3, 0.0),
qa.normalize(false),
)),
),
param,
)
} else {
(
SignedDistance::new(
min_distance,
fabs(Vector2::dot_product(
direction(p0, p1, p2, p3, 1.0).normalize(false),
(p3 - origin).normalize(false),
)),
),
param,
)
}
}